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The formation of fibers from polymer melts is one of the basic ways to produce synthetic 
threads. Modeling these processes mathematically makes it possible to expose the basic phys- 
ical factors which affect the formation, to find the most appropriate operating conditions 
and methods, and to estimate the parameters of the basic machinery. Construction of complete 
mathematical models of such processes is still far from finished. Existing calculational 
methods make it possible to find distribution parameters for a single thread [i]. However, 
in actual industrial processes, tens or hundreds of elementary fibers are drawn simultaneously. 
A method has been suggested and tested [2, 3] to model the motion and heat transport in fiber 
bundles. It allows flow parameters to be calculated and can serve as a basis for constructing 
more exact models for drawing combined fibers in an open fluid and in various devices. 

However, in some methods of fiber formation ["wet" and "dry"] and in many processes for 
producing fiber bundles, determining how the fibers interact with each other and with the ex- 
ternal fluid is affected by mass-transport processes. Thus, in making thermally stable carbon 
fibers, the polymer (matrix) is burned off, and gaseous combustion products are given off. 
The drying and and the "dry" formation of combined fibers are accompanied by the evaporation 
of the liquid, and "wet" formation occurs due to mass transport between the fiber and the fluid. 
Formation from a melt can be accompanied by partial decomposition of the polymer and the evolu- 
tion of toxic low molecular weight compounds. Removing these compounds and neutralizing them 
is a serious ecological problem. All these examples indicate the urgency for constructing 
models of heat and mass transport in fiber bundles from whose surfaces additional gas and 
liquid are given off. Therefore there is interest in expanding previously derived methods for 
calculating heat transport in rod bundles and in applying them to modeling heat and mass 
transport in fiber systems that give off gas. 

i__. Basic Equations and Boundary Conditions. Equations for filtration and heat transport 
in moving rod bundles have been derived [3] via the traditional approach with evolution of a 
control volume. By using the simplifications introduced in [3], a system of equations for 
axisymmetric flow can be written in the form of equations for a boundary layer: 
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Here u z and v z a r e  t h e  components  o f  t h e  f i l t r a t i o n  v e l o c i t y  c o r r e s p o n d i n g  t o  x and r ;  p i s  
t he  p r e s s u r e ;  T z i s  t he  t e m p e r a t u r e ;  c a i s  t h e  c o n c e n t r a t i o n ;  p i s  t h e  d e n s i t y ;  ~ i s  t h e  
p o r o s i t y ;  Cp i s  t h e  h e a t  c a p a c i t y ;  ~ i s  t h e  dynamic v i s c o s i t y ;  ), i s  t h e  t h e r m a l  c o n d u c t i v i t y ;  
D i s  t h e  d i f f u s i o n  c o e f f i c i e n t ;  and t h e  s u b s c r i p t  1 d e n o t e s  p a r a m e t e r s  o f  f i l t r a t i o n  f low 
in  t h e  b u n d l e .  

The t r a n s p o r t  c o e f f i c i e n t s  1~, t ,  and D in  Eqs.  ( 1 . 1 )  s h o u l d  c o n s i d e r  t h e  d i s s i p a t i v e  
p r o c e s s e s  in  t h e  h y p o t h e t i c a l  p o r o u s  medium; t h e r e f o r e  in  t h e  g e n e r a l  c a s e  t h e y  d i f f e r  from 
t h e  c o e f f i c i e n t s  o f  m o l e c u l a r  v i s c o s i t y ,  t h e r m a l  c o n d u c t i v i t y ,  and d i f f u s i o n .  However,  in  
many c a s e s ,  a u t h o r s  use  v a l u e s  which c o r r e s p o n d  t o  p h y s i c a l  m a t e r i a l  p a r a m e t e r s  which a r e  
v a l i d  f o r  r a r e f i e d  s t r u c t u r e s  when t h e  t w i s t i n g  c o e f f i c i e n t  i s  c l o s e  t o  u n i t y  [4 ,  5 ] .  Equa- 
t i o n s  ( 1 . 1 )  a r e  w r i t t e n  f o r  h e a t  and mass t r a n s p o r t  in  a two-componen t  medium. The p r e s e n c e  
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of more components in the mixture should be accounted for by the corresponding transport equa- 
tions for the other components. Here it shouldlbe noted that the transport coefficients, 
the density, and the heat capacity in the equations of motion and heat transport are averages 
and depend on the mass composition of the mixture and the physical parameters of the compo- 
nents. 

The region of filtration flow in the bundle is joined to a homogeneous region. In order 
to describe motion and heat and mass transport in this region we use equations for the boundary 
layer. They can be obtained from (i.i) by setting E = i and R x = Q = K = G = 0. The subscript 
2 is used for parameters in this region. 

The interaction between regions is reflected by compatibility conditions at the boundary 
of the bundle (r = Rb): 
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As boundary conditions we describe the conditions on the axis of symmetry and at infinity 
for a bundle in an open fluid and at r = R T for flow in a tube: 
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E q u a t i o n s  ( 1 . 1 ) - ( 1 . 3 )  d e t e r m i n e  t h e  h e a t  and  m a s s  t r a n s p o r t  i n  a m o v i n g  f i b e r ,  b u n d l e ,  i f  G, 
Rx,  Q, and  K a r e  known.  

2.  M o t i o n  a n d  H e a t  and  Mass  T r a n s p o r t  i n  a C e l l .  The unknown G, R x ,  Q, and  K c a n  be  
f o u n d  v i a  t h e  c e l l  m e t h o d  [ 6 ] .  A m o d i f i e d  c e l l  m o d e l  h a s  b e e n  d e s c r i b e d  [ 2 ,  3] w h i c h  makes  
i t  p o s s i b l e  t o  r e f l e c t  t h e  e f f e c t  o f  t h e  b o u n d a r y  c o n d i t i o n s  o f  t h e  w h o l e  p r o c e s s  on t h e  d i s -  
t r i b u t i o n  o f  t h e  b a s i c  p a r a m e t e r s  i n  c e l l s .  By u s i n g  t h i s  m e t h o d ,  we w i l l  r e p r e s e n t  t h e  f l o w  
i n  t h e  n e i g h b o r h o o d  o f  a s i n g l e  f i b e r  i n  t h e  f o r m  o f  a x i s y m m e t r i c  m o t i o n  i n  a c o a x i a l  c y l i n -  
d e r ,  whose internal radius coincides with the radius of the fiber (without loss of generality 
we will assume that the fiber is a long thin rod with radius Rrod), and whose outer radius 
has the form Rk = Rro d (i - E)-:/2. In order to describe the transport processes in this cell, 
we make use of the boundary-layer equations, whose analytic solution will be sought via the 
method of successive approximations [7], where as the zero order approximation we use param- 
eters which satisfy the equations 
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( 2 . 1 )  

Equations (2.1) differ from the previous [2~ 3] corresponding cell equations by the presence 
of convective transport components in the radial direction, which result from blowing gas on 
the surface of the fiber. The boundary conditions for this problem are 

tt = Urod ,  V = Vrod, T --  Trod, C = C r o  d (r = R r o d ) ,  
u = UA, 7' = T~, c = c~ (r = R~x), 

(2.2) 

where Uro d and Tro d are the velocity and temperature of the fiber; Cro d is the concentration 
on the surface of the fiber; and Vro d is the blowing gas velocity. The relationships at 
r = Rro d correspond to the physical conditions of the problem, and the parameters UA, TA, and 

c k are temporarily unknown quantities which are determined from the integral equations 
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(2.3) 

The first expression indicates that the filtration velocity is averaged over the mass of the 
cell, the filtration gas temperature T l is averaged over the heat in the cell, and c I is 
averaged over the mass of the corresponding component. 
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By solving Eqs. (2.1) with the boundary conditions (2.2), we obtain 

" '~ /~ (r, ~), = ~; od~- (U~ --  God) !~ (~, =) + 

T ---- T r o d +  (T~ -- T rod)/o(r, ST), 

C - -  Crod~ (CA - -  Cro d )/'0 (r, r162 [o (r, ~) = /~--7-"---'~., 
�9 -- ~rod 
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c~ = R a t e d =  ~rod Rrod/v, sT = R a t e d  Pr ,  ac = Rerod ,Sc ,  

P r  = t wr/%, Sc = v/D. 

The parameters UA, T~, and c~ are found with the aid of (2.3) from the expressions 

r = d p  q s)[, 
Ta = Trod-{- B~-lu~ (T~ -- Trod),  

CA = Cl-od -~- B c l U l  (C 1 - -  C rod)" 
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The functions Si(E , ~ ,  aT) and Si(s, ~, ec) are determined by 
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Once we have the distributions of the velocity, temperature, and concentrations in the 
cell, we can find the unknown quantities Rx, Q, K, and G. But first we note that the veloc- 
ity, the energy, and mass in the cell which surround the rod not only change from interaction 
with the fiber surface, but also depend on the blowing gas velocity. As a result, the volu- 
metric sources of heat, mass, and friction in the bundle are determined in the form 

2nBrod~_~ 
G - ~ , '  rod ~od-- ~,rod), 

2aRrod ~ 2aR rod (2.6) 
q ~W"~od'rod--qrod),K-- ~ '(P"rod~od -- God) 

where Trod is the friction stress on the fiber surface, and qrod and trod are the thermal 
and diffusion fluxes from the fiber surface. By using (2.4) we find 
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~u , , dp f, "R " Xrod~  ~r ~ ~ (Ua  - -  Urod)/0 (Rrod,  ~ ) +  ~T~-z 1 ( r o d S ) ,  ( 2 . 7 )  
. o r  ~r=Rro d 

q rod = -- X (TA- Tro d)/~ (R rod, =~), grod= -- D (c~- c rod)/0 (Rrod, ~c). 

The mass source G is computed from the velocity of the blowing gas to the surface or the re- 
moval of gas from the fiber surface 

2aBrod 
G= ~R~ Ur~ 

Equations (2.6) and (2.7) complete the formulation of the above problem of heat and mass 
transport in the bundle of moving fibers. 

3. Calculated Results. The parameter distributions (2.4) show that gas evolution on 
the fiber surfaces substantially changes the form of the solutions in the cell. The distri- 
butions of the basic parameters in this case are given in the form of power functions (as 
opposed to logarithmic functions) of the transverse coordinates, which functions were obtained 
for flow without blowing gas. There is an asymptotic transition from the power functions 
to logarithmic functions as a + 0; as a result Eq. (2.4) can be considered to be a generaliza- 
tion of previous results. The effect of blowing gas can be more clearly shown by comparing 
the friction stress on the rod with and without blowing gas. Table I shows the ratio ~ = 
Trod/T0, where T O is the friction without blowing gas, as a function of the blowing parameter 

= Rero d for various values of the porosity E. The friction stresses are compared for iden- 
tical filtration velocities in the cell for the simplest case - forced convection in an open 
fiber bundle (dp/dx = 0). From the table it can be seen that Tro d decreases as the blowing 
increases, and friction increases for gas evolution (Vro d < 0). This behavior of the curves 
corresponds qualitatively to the way the friction varies for blowing gas or gas evolution in 
the boundary layer of a single cylinder. The condition Trod/T 0 § i is fulfilled as ~ + 0. 

The ratios qrod/q0 and grod/g0 for the heat and mass flows behave in an analogous manner. 

The change of local friction parameters in the cell caused by gas evolution makes possible 
the assumption that the evolution has a substantial effect on the heat and mass transport of 
the whole bundle. In actual industrial processes for working or forming fibers, the evolu- 
tion of liquid or gas is a result of chemical reactions in the volume of the fiber or else is 
determined by the rate of phase transitions at the fiber surface. Today explicit functions 
for many kinetic processes either are unavailable or else they are rather complicated and must 
be examined separately for each process [8]. In this regard, here we examine problems in 
which the magnitude of the blowing gas is either specified or established from comparatively 
simple functions of the coupling parameters at the surface of the thread. 

We will assume that the bundle has the following characteristic parameters: radius R b = 
50 mm; fiber radius Rro d = 0.125 mm;. number of fibers N = 140; velocity Uro d = 0.5 m/sec; 

fiber temperature Tro d = 270~ temperature of the fluid or the tube wall T~ = T w = 20~ 

and tube radius R T = 70 mm. In the first group of problems, the blowing gas velocity Vro d 

is taken constant and identical for all fibers in the bundle. The calculations were done 
for the following set of Reynolds numbers for the blowing gas: ~ = 0, 0.005, 0.05, and 0.5. 
Numerical solutions of Eqs. (1.1)-(1.3), (2.6), and (2.7) were obtained by the method in [9]. 

Figures 1 and 2 show the distributions of the filtration velocities and temperatures of 
the gas on the axis (curve s) and of the fiber surface (curve p), which moves in an immobile 
inorganic fluid (curves i-4 for ~ = 0, 0.005, 0.05, and 0.5). It can be seen that the gas 
velocities and temperatures are much lower on the surface of the fiber bundle than in the 
center. This is caused by the development of flow within the bundle, which decreases the 
thickness of the boundary layer and limits the zone for transport of gas from the external 
fluid to the space between the rods. As the flow develops, the transport flows decrease, and 
the velocities and temperatures of the gas start to increase. They tend monotonically to 
their limiting values of Uro d and Tro d . Here it can be seen that the rate of change of the 
velocities and the temperatures depends strongly on the blowing parameter a. For ~ = 0.5, 
even for x/R b = 20, the filtration velocities and temperatures almost coincide with Uro d and 
Trod, and have a stabilized homogeneous profile throughout the volume of the bundle. 

Distributions of the velocities and temperatures along the length of the channel are 
shown in Figs. 3 and 4. Here, as in the previous case, we show curves which characterize 
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parameter changes on the axis and at the boundary of the bundle (the notation coincides with 
that in Figs. 1 and 2). The initial distributions for the filtration velocity were assumed 
homogeneous and equal to the velocity of the fiber motion. This would make it possible to 
exclude the effect of the dynamic initial section and to show the effect of blowing gas on 
hydrodynamics and heat transport in the bundle. In Fig. 3 it can be seen that the velocities 
change linearly in the channel, and the rate of change is determined by ~. Here the velocity 
is somewhat higher at the bundle boundary on the axis. This behavior of the flow is caused 
by the transport of gas from within the bundle to the region of homogeneous flow for R b < r < 
R T and by the formation of the maximum longitudinal velocity within this region. The gas 
temperature increases monotonically with x and approaches Trod; however, as compared with the 
heat transport in an open fluid, the temperature change in the channel occurs much slower 
in this case - and reflects the effect of the wall. 

In these examples, we obtained solutions of problems of blowing a homogeneous gas. For 
investigations of mass transport, there is interest in case of blowing a foreign gas, which 
occur, for example, for liquid evaporation on the surface of the thread. In the following 
group of problems we examine an isothermal system of rods, on whose surfaces the concentration 
of the evolved component Crod is specified as a constant. As follows from the boundary condi- 
tions, a hydrodynamic flow with a blowing velocity [i0] 

D 0c r=Rrod" (3.1) 
~od -- i --c rodOr 

i s  formed f o r  mass f lows  on t h e  s e p a r a t i o n  s u r f a c e ,  which i s  impermeable  t o  t h e  f l u i d .  The 
r e l a t i o n s h p  between Crod,  Vrod,  and a c / a r [ R r o  d can be o b t a i n e d  from t h e  a n a l y t i c a l  s o l u t i o n s  

o f  ( 2 . 4 )  and ( 2 . 5 ) ,  a f t e r  t h e  p rob lem has been s o l v e d  c o m p l e t e l y .  

The ( s o l i d )  c u r v e s  in  F i g .  5 ( f o r  an open b u n d l e )  and F i g .  6 ( f o r  f l ow in  a t u b e )  show 
t h e  change  t h e  c o n c e n t r a t i o n s  o f  t h e  e v o l v e d  component  on t h e  a x i s  and on t h e  s u r f a c e  o f  t h e  
bund l e .  The c a l c u l a t i o n s  a r e  done f o r  Cro d = 0 .4  and 0 .8  ( c u r v e s  l a n d  2 ) ;  h e r e  we took  
c~ = 0.02 and Sc = 3. The geometric dimensions and the fiber velocities in these problems 
were taken the same as in the previous cases. Figures 5 and 6 also show the distribution of 
the blowing parameter a (dashed curves) which were computed by using Eq. (3.1). These cal- 
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culations show that the foreign gas concentration in the center part of the bundle rises much 
faster than at the periphery (it reflects the effect of fluid transport from the outer fluid 
to the surface layers of the bundle). Increasing Crod increases the mass transport, and rela- 
tively rapid evaporation is observed on the surface fibers in the initial section (~ ~ 0.5 for 
Crod = 0.8). As the flow and the formation of an outer boundary layer develop, the gradients 

%c/SriRro d decrease and lower the gas evolution. Mass transport in a channel is characterized 

by a smoother change in concentration. Moreover, due to the more uniform distribution of the 
filtration velocity through the bundle thickness, the difference between c r = Rb and c r = 0 

and also between ~r = R b and ~r = 0 decreases substantially. At the same time higher values 
of the gas evolution rates are observed throughout the bundle. These features lead to the 
conclusion that cooling or processing fibers in a channel is better than in an open fluid. 

In conclusion, we note that these numerical solutions allow the conclusion that the 
proposed flow model is applicable for calculations of heat and mass transport processes in 
bundles of moving fibers with gas evolution. The asymptotic behavior of the solutions for 

§ 0 and their transition to known tested functions can serve as a qualitative evaluation 
of the reliability of our results. Obtaining quantitative estimates of the accuracy of this 
method is currently very difficult due to the absence of experimental investigations. In 
spite of this, the substantial effect of gas evolution on the distribution of the basic param- 
eters, especially for heat and mass transport in an open fluid, demonstrates the urgency of 
further theoretical study of these processes. 
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DYNAMIC DISINTEGRATION AND EXPANSION OF A LIQUID VOLUME 

R. M. Aksenov, A. A. Zverev, O. V. Kovalenko, 
V. K. Sirotkin, and E. V. Sumin 

UDC 532.528 

The process of dispersing (disintegrating) a liquid volume and forming a droplet-air 
cloud during an explosion can be divided into the following [three] stages. The first -- the 
propagation of an explosive wave which arises when the charge detonates -- is essentially 
determined by an explosion in an unbounded liquid, and has been studied theoretically and 
experimentally [i-5]. 

The second stage starts when the shock wave propagating through the liquid reaches a 
free surface, reflects, and produces a rarefaction. The tensile stress which arises behind 
the rarefaction front leads to the intense production of vapor-gas bubbles - the cavitation 
phenomenon [3, 6-8]. The solution to the problem of bubble cavitation has been examined in 
[9-14]. In particular, the explosive loading of a cylindrical liquid layer has been studied 
in [15-18]. Depending on the magnitude of the specific energy release it has been established 
that either cavitation disintegration or hydromechanical perturbations (of the Rayleigh-Taylor 
type) can occur on the inner and outer surfaces of the liquid volume. A break-away disinter 
gration, which has been observed experimentally [3, 19] is also possible. The second stage 
ends when the volume concentration of bubbles in the liquid reaches a critical value, at which 
an inversion process takes place: the bubble-filled liquid transforms to a droplet stage. 

The third stage starts with the formation of a droplet-vapor mixture; as it moves it is 
blown by the reverse flow of the surrounding air on the outer boundary and by the detonation 
products on the inner boundary. The expansion of the initial finely dispersed particles or 
droplets and estimates of the dimension of the resultant droplet-air cloud is discussed in 
[20] and [21]. 

Here we study the problem of the explosive dispersion of a liquid volume, the subsequent 
expansion of the resultant droplet-air cloud [22] in spherical and cylindrical geometry, and 
propose an approximate numerical model. The problem is examined for large-scale phenomena 
when the relaxation time of the tensile stresses in the rarefaction wave are small compared 
to a characteristic hydrodynamic time scale. 

I. We study a solid chemical explosive charge with an initial density Pex and radius 
R0c which is surrounded by a liquid layer with a radius R0k. The initial liquid pressure is 
P01 with density P01" The liquid is surrounded by infinite air with an initial pressure P02 
and density P02- In the spherical case it is assumed that at time t = 0 an energy W is 
instantaneously released in a volume v i = 4/3~R~c; the intial pressure Pi of the detonation 
products is found from [5] 
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